In this article, you’ll find out how peptides reconstitution works. Peptides are short stretches of amino acids which are better known as the building blocks of proteins. Peptides often mimic the function of essential proteins or hormones and help to establish the positive effects of the same without any adverse effects. Among the various significant functions of peptides include boosting physiological metabolism, weight loss, enhancing cognitive function, improving sleeping patterns and sexual health. Of late, many peptides have been approved for human consumption, especially those regulating metabolism of body fat.

Lyophilized Peptides

The manufacturers sell peptides in freeze-dried powder or lyophilized form. Lyophilization is the technique whereby water gets removed from a solution upon freezing. The use of vacuum allows ice to be directly converted into vapor from solid without passing through the intermediate liquid phase. The powder either has a granular appearance or looks fluffy, depending on the technique used for lyophilization.

Peptides Reconstitution

The lyophilized peptides need to be dissolved in the solvent before use. There is no universal solvent that can be used for all the peptides. The choice of solvent is guided by peptide stability and compatibility of the specific solvent with bioassays. In this respect, sterile water or bacteriostatic water often is the first choice of solvent. In spite of being the first choice, sterile or bacteriostatic water cannot dissolve every peptide. Hence experimentation with different solvents is often required for optimizing the solvent of choice. Sodium chloride solution in water is not advised to be used for dissolving peptides so as to avoid precipitation with acetate salts.

The polarity or native charge of a peptide is the key determinant for the solvent of choice. Basic peptides require acidic solvents, whereas acidic molecules require basic solvents for optimal dissolution. The hydrophobic and neutral molecules dissolve best in organic solvents like DMSO, propanol, and acetic acid. The powder should be dissolved in a small volume of the organic solvent and further diluted in sterile water. It is important to note that peptides with methionine or free cysteine should not be d in DMSO to avoid side-chain oxidation; else, they are rendered inactive.

Peptides Reconstitution Guidelines

Selection of appropriate solvent demands sterile water, 0.1% acetic acid, or any solvent that can be easily removed by lyophilization. It is recommended to dissolve a small amount of the peptide in the chosen solvent before dissolving the complete vial. The molecule should always be dissolved to form a higher stock concentration than that required for the actual assays. It can be diluted further in the appropriate assay buffer to derive at the appropriate concentration for use in the bioassays.


Upon resuspension, visible particles sometimes persist in the peptide solution. The vial can then be sonicated to enhance the dissolution of the particles to yield a clear solution. Sonication does not modify the solubility of the peptide but expedites the breaking up of the particles to enhance solubility. Post sonication, the researcher has to inspect for the presence of any surface layer, cloudy appearance, or gel-like consistency. If so, then the peptide has merely got suspended but not dissolved. Hence, it would demand the use of a more potent solvent.

Practical Implementation in the Laboratory

In this segment, we have outlined simple guidelines for the effective dissolution of peptides in the laboratory. Most peptides have recommended storage temperatures as lyophilized powder and solution and should be adhered to. If the powder form of the substance is stored in refrigerated condition, it should be equilibrated to room temperature initially before resuspension. The peptide solution can be filtered through a 0.2 µm filter to avoid any possible bacterial contamination since it is a rich source of amino acids.

Peptides Reconstitution – Example using sterile water as the diluent:

Step 1 – The plastic cap from the peptide vial should be removed so that the rubber stopper can be accessed.

Step 2 – The rubber stopper of the sterile water vial gets exposed upon removal of the plastic cover of the vial.

Step 3 – The rubber stoppers should be swabbed with alcohol to sterilize them from any possible bacterial contamination.

Step 4 – 2mL (milliliters) of water needs to aspirated from the sterile water vial.

Step 5 – 2mL (milliliters) of sterile water needs to be injected into the peptide vial, allowing the water to enter the vial gradually.

Step 6 – The vial should be gently swirled to allow the peptide to dissolve into the solvent. Shaking of the vial should be avoided.

Disclaimer: The products mentioned are not for human or animal consumption. All the information shared in this article is for educational purposes only.

Role of GHK-Cu in the Improvement of the Growth of Hair Follicle

GHK-Cu is formed as a result of the affinity of the human peptide, GHK (glycyl-L-histidyl-L-lysine) to the Cu(2+) (Copper 2+). In the human body, the GHK-Cu has varied roles like collagen stimulation, anti-inflammatory, and anti-oxidant effects, enhancing the...

How does Epitalon reverse aging?

Epitalon is a peptide that has been majorly studied with respect to its anti-aging influence. The findings have been restricted to animal studies. Hence the efficacy of the molecule in humans is subject to conjecture. The molecule has been shown to reverse the aging...

Unique Effect of Sermorelin on Sleep

What is Sermorelin? Sermorelin is a synthetic analog of the naturally occurring growth hormone-releasing hormone (GHRH). GHRH is a 44 amino acid long peptide, and Sermorelin comprises the first 29 amino acids. The shortened peptide is biologically potent like the...